Проблемы безопасности и задачи риск-анализа: особенности и возможности

Лепихин Анатолий Михайлович, д.т.н., НТЦ «Нефтегаздиагностика», ФИЦ ИВТ СО РАН

Безопасность – это отсутствие недопустимого риска

Проблемы анализа безопасности

Проблема 1

Анализ уровня риска аварий (уровня безопасности)

$$R(t) = \int_{t} FV(t) \times P_{f}(t) dt \le [R]$$

Проблема 2

Нормативное обоснование безопасности (риска)

Анализ ущербов

FV(t) - будущая стоимость ущерба = сумме денежных потоков

$$FV(t) = CF(i+1)^t,$$

$$CF = C_L + C_O + C_R + C_E$$

 C_L — стоимость потерянного продукта; C_Q — потери отложенной добычи; C_R — затраты на ремонт; C_E — экологический ущерб

 $P_f(t)$ - Вероятность аварии = вероятности наличия критического повреждения

$$P_f(t) = \int_t \int_X \int_D f(X)f(D|X)dDdX$$

Проблема 3

Обоснование безопасности повреждений

X – переменные состояния;

D — повреждения металла

Проблема 4

Обоснование безопасности ремонтов

Проблема 1 – Статистический анализ риска аварий

Интенсивности аварий газопроводов и нефтепроводов 1)

Интенсивности отказов 1/км×год	Магистральные газопроводы	Промысловые газопроводы	Магистральные нефтепроводы	Промысловые нефтепроводы
	Назе	иные трубопровод	Ы	
Среднее значение	2.05×10 ⁻⁴	2.50×10 ⁻⁴	1.26×10 ⁻³	3.43×10 ⁻³
Стандартное отклонение	7.83×10 ⁻⁶	4.35×10 ⁻⁵	1.48×10 ⁻⁵	3.07×10 ⁻⁴
Нижняя 80% граница	1.95×10 ⁻⁴	1.94×10 ⁻⁴	1.24×10 ⁻³	3.03×10 ⁻³
Верхняя 80% граница	2.15×10 ⁻⁴	3.06×10 ⁻⁴	1.30×10 ⁻³	3.83×10 ⁻³
	Подво	одные трубопровод	ДЫ	
Среднее значение	1.89×10 ⁻³	6.24×10 ⁻⁴	3.34×10 ⁻⁴	5.01×10 ⁻⁴
Стандартное отклонение	1.93×10 ⁻⁴	9.40×10 ⁻⁵	8.11×10 ⁻⁵	2.89×10 ⁻⁴
Нижняя 80% граница	1.65×10 ⁻³	5.06×10 ⁻⁴	2.30×10 ⁻⁴	5.06×10 ⁻⁴
Верхняя 80% граница	2.14×10 ⁻³	7.47×10 ⁻⁴	4.38×10 ⁻⁴	7.47×10 ⁻⁴

Ущербы от аварий 1)

Трубопроводы	Ущербы, \$			
	Средние	Максимальные		
Наземные нефтепроводы				
Магистральные	10 ⁴ – 10 ⁵	10 ⁸		
Промысловые	10 ⁴ – 10 ⁵	10 ⁷		
Подводные нефтепроводы				
Магистральные	10 ⁵ - 10 ⁶	10 ⁷		
Промысловые	-	-		

Трубопроводы	Ущербы, \$			
	Средние	Максимальные		
Наземные газопроводы				
Магистральные	$10^5 - 10^6$	10 ⁹		
Промысловые	10 ⁴ – 10 ⁵	10 ⁶		
Подводные газопроводы				
Магистральные	10 ⁵	10 ⁷		
Промысловые	10 ⁵	10 ⁶		

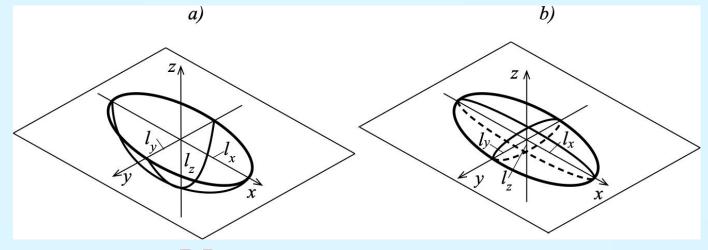
Проблема 2 — Нормативное обоснование уровня безопасности

[CSA S471-04 General requirements, design criteria, the environment and loads]

Уровень ущерба Класс Уровень вероятностей безопасности отказов 10-3...10-5 Класс 1 Высокие потенциальные угрозы для жизни людей и окружающей среды 10⁻¹...10⁻³ Класс 2 Малые потенциальные угрозы людей жизни ДЛЯ окружающей среды $\geq 10^{-1}$ Класс 3 Нарушение функционирования трубопровода

[DNV-OS-F101 Submarine pipeline systems, ГОСТ 54382 Подводные трубопроводные системы]

Классы безопас- ности	Вероятности отказов	Ущерб для жизни	Экологический ущерб (утечки), тонн	Экономичес- кий ущерб (время вос- становления)
Класс 1	< 10 ⁻⁵	Пострадавших	0	0 дней
		нет		
Класс 2	10 ⁻⁵ 10 ⁻⁴	Серьезные	< 10 ³	< 1 месяца
Класс 3	10 ⁻⁴ 10 ⁻³	травмы, один	10 ³ 10 ⁴	1-3 месяца
Класс 4	10 ⁻³ 10 ⁻²	погибший	10 ⁴ 10 ⁵	3-12 месяцев
Класс 5	> 10 ⁻²	Более одного	≥ 10 ⁵	> 12 месяцев
		погибшего		

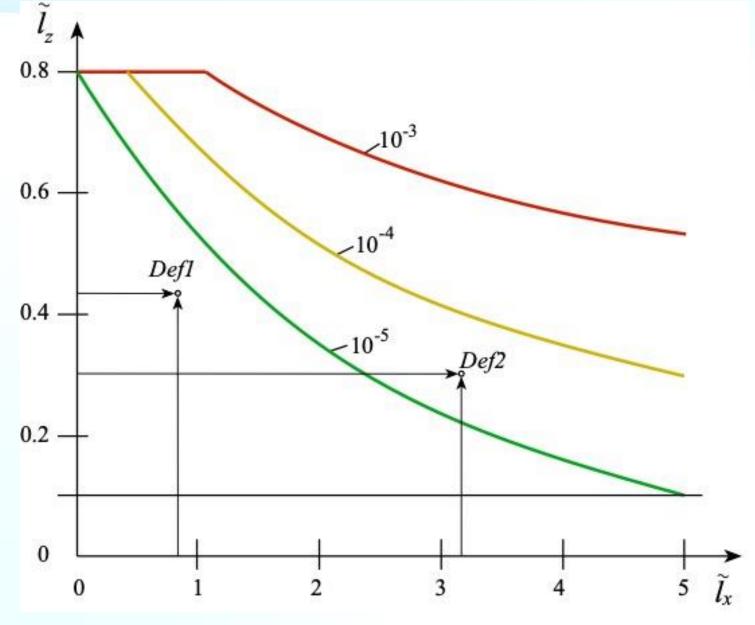

Задача анализа риска аварий трубопроводов в целом последовательно решается при наличии больших статистических баз.

Задача классификации безопасности трубопроводов находится в стадии решения. Методические обоснования предлагаемых классов безопасности отсутствуют.

Проблема 3 – Обоснование безопасности дефектов

Дефекты: объемные (коррозионные повреждения), плоские (расслоения, трещины, риски)

$$l_x \approx l_y \approx l_z$$



Критерий безопасности объемных дефектов

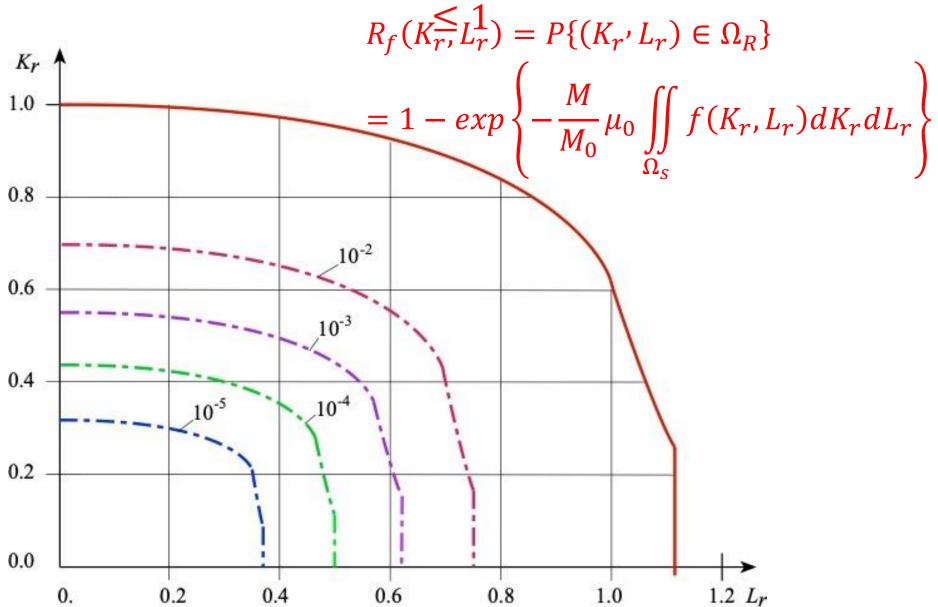
[DNV-RP-F101, BS7910, ВРД39.1.10.004]

$$\sigma_{e} \leq \sigma_{f} \times RF_{d} \quad RF_{d} = \frac{1 - A/A_{0}}{1 - A/(A_{0}Q)} \qquad \tilde{l}_{z} \leq \frac{1}{\gamma_{d}} \frac{\sigma_{f} - 0.75 \frac{\gamma_{R}PD}{t}}{1.1\sigma_{f} - \frac{\gamma_{R}PD}{2t} \frac{1}{Q}}$$

 σ_e — расчетное номинальное напряжение; σ_f — расчетное предельное напряжение для бездефектной трубы; RF_d — риск-фактор дефекта; A — площадь сечения дефекта; A_0 — площадь сечения трубы в зоне дефекта, Q — фактор Фолиаса

Диаграммы опасности дефектов

$$\tilde{l}_{x} = \frac{l_{x}}{\sqrt{Dt}}, \quad \tilde{l}_{z} = \frac{l_{z}}{t}$$


$$K_r = \frac{K_I}{I}$$
, $L_r = \frac{\sigma_e}{\sigma_b}$

$$l_x > l_y \gg l_z$$

Критерии безопасности трещин

- 1. Диаграмма разрушения Dowling и Townley диаграмма FAD [BS7910]
 - 2. Диаграмма трещиностойкости Е.М. Морозова

$$\left(\frac{\sigma_e}{\sigma_b}\right)^{\alpha} + \left(\frac{K_I}{I_c}\right)^{2}$$

Проблема 4 - Обоснование безопасности ремонтов

Затраты на ремонт трубопроводов

Ремонт с подъемом на поверхность

Вид работ	Объем работ	Стоимость, \$
Визуальный осмотр с	Не менее 2-х	70.000
использованием ROV	дней	
Внутритрубная диагностика	-	500.000
Вырезка дефектного участка	Не менее 28	2.100.000
трубы	дней	
Сварка и укладка	Не менее 2-х	600.000
трубопровода	дней	
Аренда трубоукладчика	-	1.000.000
Стоимость раб	ОТ	4.270.000
Общая стоимость с учетом дополнительных		5.500.000
расходов на непредвиденные (30 %)	обстоятельства	

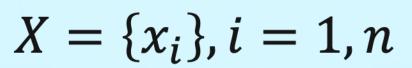
Ремонт с использованием подводных аппаратов

Вид работ	Стоимость, \$
Локализация и обследование повреждения	280.000
Стоимость металла и изготовления муфт	750.000
Стоимость подготовки ремонта и монтажа муфт	4.000.000
Подготовка земляных работ и подготовки траншеи на дне	3.640.000
Оплата работ в зависимости от дневной ставки	4.550.000
Стоимость опрессовки трубопровода	500.000
Общая стоимость работ	13.720.000

Высокая стоимость ремонтов морских подводных трубопроводов требует обоснований проведения операций и выбора технологий ремонта.

Проблема 5 – Расчетный риск-анализ конструкций

Риск-анализ конструкций — анализ вероятностей или возможностей достижения предельных состояний конструкций, приводящих к критическим отказам - разрушениям в заданных условиях нагружения


Неопределенности:

- неточности инженерных моделей;
- погрешности измерений переменных;
- случайные рассеяния переменных;
- неизвестность значений переменных

Формы представления неопределенностей и риска

Базисные переменные

переменные допускающие прямое измерение или наблюдение

Средние значения и дисперсии

$$x_i = \mu_x \pm u_p s_x$$

Функции распределения вероятностей

$$F(x_i), f(x_i)$$

Интервальные представления

$$x_i = \left[\underline{x}_i, \overline{x}_i\right]$$

Детерминированные модели конструкционной прочности

мера риска – коэффициенты запаса

Вероятностные модели теории надежности и риска

$$R_f(X) = \int\limits_X f(X) \, dX$$

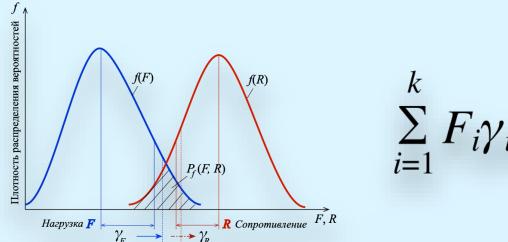
Интервальные модели и меры возможностей

$$R_f(X) = \varphi\{[\underline{X}, \overline{X}]\}$$

Неизвестные переменные

Модели риск-анализа

$$x_i, R_f - ?$$

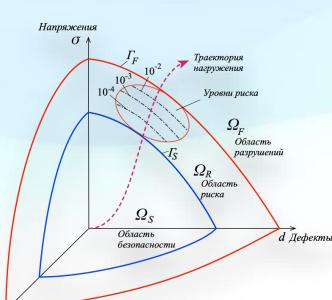

 R_f – функция риска (вероятность разрушения)

Концептуальные уровни обоснования безопасности

І. Конструкционная безопасность

1. Обоснование конструкционной прочности

Есть отечественные и зарубежные нормы


$$\sum_{i=1}^{k} F_i \gamma_i \leq F_d, F_d = A \frac{R_n \gamma_m}{\gamma_s \gamma_n}$$

2. Вероятностный риск-анализ предельных состояний

Отечественных и зарубежных базовых норм нет

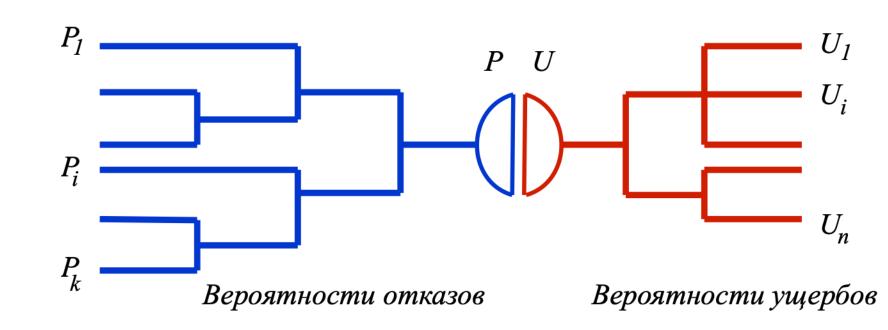
3. Вероятностный риск-анализ конструкций

Отечественных и зарубежных базовых норм нет

$$\mathbf{p} = \mathbf{p} \begin{bmatrix} k \\ \mathbf{r} & \mathbf{r} \end{bmatrix}$$

 $P_f = P\left\{\sum_{i=1}^{\kappa} F_i \gamma_i > F_d\right\} \leq [P_f]$

 $R_{\Sigma} = P\left\{\sum_{i=1}^{k} F_{i} \gamma_{i} > F_{d}\right\} \times U_{f} \leq [R_{\Sigma}]$

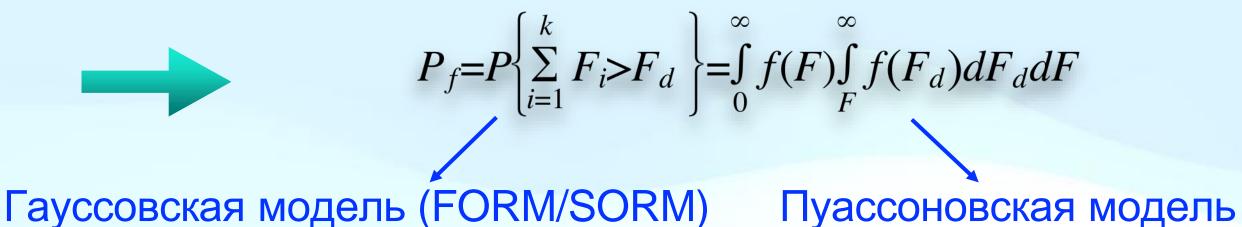

II. Функциональная безопасность (безопасность оборудования и объектов)

Моделирование сценариев, анализ деревьев отказов (FT) и событий (ET)

Базовые нормы: ГОСТ Р 54142-2010,

ΓΟCT P 51901.13-2010, ΓΟCT P 27.302-2009,


ГОСТ Р МЭК 62502-2014


$$R_{\Sigma} = P_f \times U_f \leq [R_{\Sigma}]$$

Вероятностный риск-анализ предельных состояний

Инженерная модель конструкции

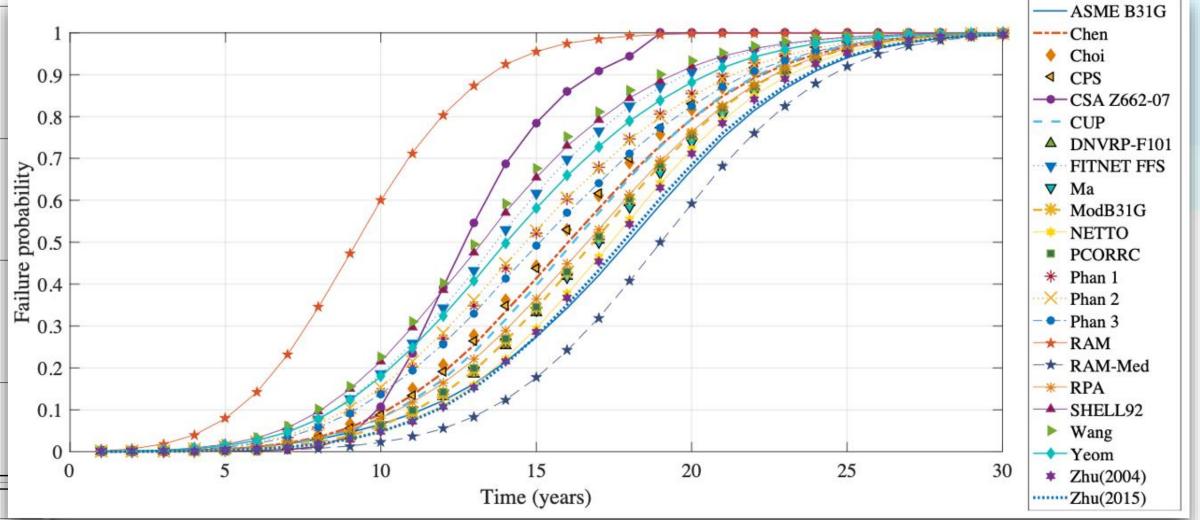
Расчет вероятностей разрушения *Pf* (функции риска) по заданному критерию предельного состояния

$$P_{f}=1-\Phi\left\{\frac{\mu_{d}-\mu_{F}}{\sqrt{S_{d}^{2}+S_{F}^{2}}}\right\}=1-\Phi\left\{\frac{n-1}{\sqrt{V_{d}^{2}n^{2}+V_{F}^{2}}}\right\} \qquad P_{f}\leq 1-\exp\left\{-\mu\int_{0}^{\infty}f(F,F_{d})\ dF_{d}dF\right\}$$

n - центральный коэффициент запаса, V - коэффициенты вариаций переменных

f(Fd, F) - плотность распределения вероятностей

Необходимо рассматривать каждый вид предельного состояния отдельно


Требуются функции распределений вероятностей нагрузок, геометрических факторов, характеристик механических свойств материалов, дефектов

Оценки риска (опасности) коррозионных дефектов

Модели оценки предельных размеров дефектов

Model and References	Authors	Expression	Bulging Factor
ASME B31G-1984 [96]	ASME	$egin{align} ext{If } rac{L^2}{DDth} &\leq 20, \ P_b &= 1.11 rac{2th\sigma_y}{DD} \left(rac{1-rac{2y}{3th}}{1-rac{2y}{3tM}} ight) \ ext{If } rac{L^2}{DDth} &> 20, \ P_b &= 1.11 rac{2th\sigma_y}{DD} \left(rac{1-rac{y}{th}}{1-rac{y}{thM}} ight) \ \end{aligned}$	$M = \sqrt{1 + 0.6275 \frac{L^2}{DDt} - 0.003375 \left(\frac{L^2}{DDth}\right)^2}$
ASME B31G-1991 [97]	ASME	$egin{aligned} &\operatorname{If} rac{L^2}{DDth} \leq 20, \ &P_b = 1.11 rac{2th\sigma_y}{DD} \left(rac{1-rac{2y}{3th}}{1-rac{2y}{3thM}} ight) \ &\operatorname{If} rac{L^2}{DDth} > 20, \ &P_b = 1.11 rac{2t\sigma_y}{DD} \left(1-rac{y}{th} ight) \end{aligned}$	$M = \sqrt{1 + \left(0.8 \frac{L^2}{DDth}\right)}$
ASME B31G-2009 [98,99]	ASME	$P_b = 1.11 rac{2\sigma_y th}{DD} \left(rac{1 - 0.85 rac{y}{th}}{1 - 0.85 rac{y}{thM}} ight)$	If $\frac{L^2}{Dt} \le 50$, $M = \sqrt{1 + 0.6275 \frac{L^2}{DDth} - 0.003375 \frac{L^4}{DD^2th^2}}$ If $\frac{L^2}{Dt} > 50$ $M = 3.3 + 0.032 \frac{L^2}{DDth}$
Modified ASME B31G [100]	ASME J.F. Kiefner P.H. Vieth	$P_b = rac{2 \left(\sigma_y + 68.95 ext{ MPa} ight)th}{DD} \left(rac{1 - 0.85 rac{y}{th}}{1 - 0.85 rac{y}{thM}} ight)$	If $\frac{L^2}{Dth} \le 50$, $M = \sqrt{1 + 0.6275 \frac{L^2}{DDth} - 0.003375 \frac{L^4}{DD^2th^2}}$ If $\frac{L^2}{Dth} > 50$ $M = 3.3 + 0.032 \frac{L^2}{Dth}$
Shell-92 [101]	Shell F.J. Klever G. Steward C.A.C. van der Valk	$P_b = rac{1.8t\sigma_u}{DD} \left(rac{1-rac{y}{th}}{1-rac{y}{tM}} ight)$	$M = \sqrt{1 + 0.805 \frac{L^2}{DDth}}$
Model and References	Authors	Expression	Bulging Factor
PCORR [102,103]	Batelle B.N. Leis D.R. Stephens	$P_b = rac{2t\sigma_u}{DD} \left(1 - rac{y}{th}M ight)$	$M = 1 - exp\left(-0.157 \frac{L}{\sqrt{DD(th-y)/2}}\right)$
DNV RP F101 [104]	Det Norske Veritas (Norway) BG Technology (Canada)	$P_b = rac{2t\sigma_u}{DD-t} igg(rac{1-rac{y}{th}}{1-rac{y}{tM}}igg)$	$M = \sqrt{1 + 0.31 \frac{L^2}{DDth}}$
API RP 579 [105]	API	$P_b = rac{2t\sigma_u}{0.9DD} \left(rac{1-rac{y}{th}}{1-rac{y}{tM}} ight)$	$M = \sqrt{1 + 0.31 \frac{L^2}{DDth}}$
FITNET FFS [106]	European Fitness for Service Network E. Seib et al.	$P_b = \frac{2th\sigma_u(1/2)^{65/\sigma_y}}{DD-t} \left(\frac{1-\frac{y}{th}}{1-\frac{y}{tM}}\right)$	$M = \sqrt{1 + 0.8 \frac{L^2}{DDth}}$

Расчетные функции риска аварий

Интервальный риск-анализ

В качестве альтернативы вероятностной мере (по Колмогорову и Мизесу) риска предлагается использовать меру возможностей (Gibbons, Chakraborty, Kohout)

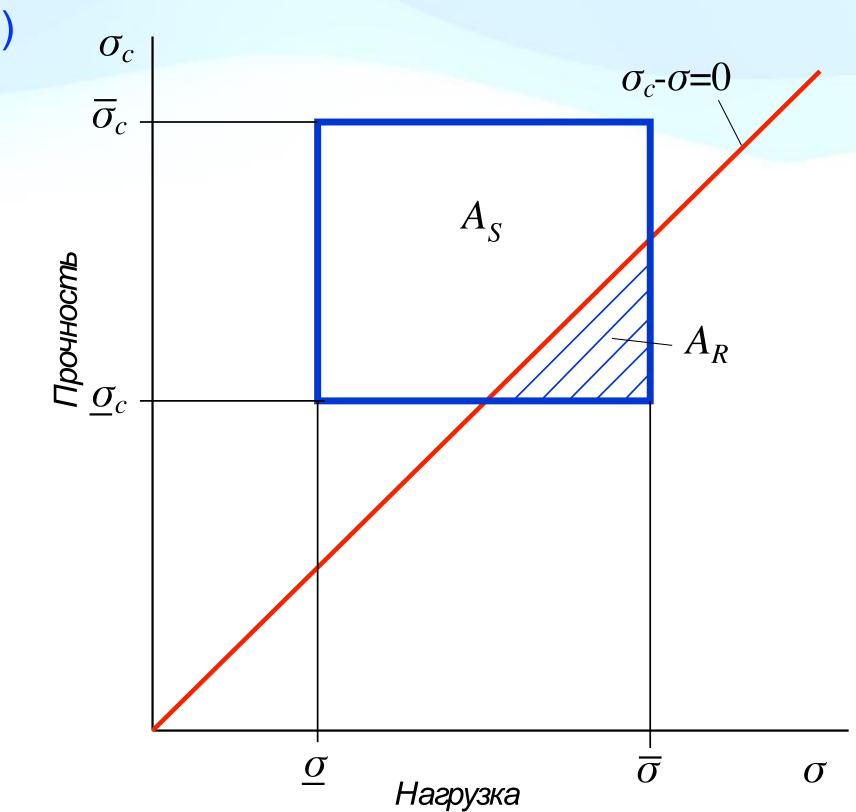
Теоретические основы методов интервального анализа возможностей разрушения сформулированы в работах Elishakoff, Ben-Haim, Wang, Quao, Zhang

Принимаемые допущения:

«Прочность» и «нагрузка» зависят от большого числа неопределенных факторов и представляются как функции переменных в интервальном виде (нижний и верхний пределы значений)

$$\sigma = \sigma(A, Q, T, \tau, N) = \left[\underline{\sigma}, \overline{\sigma}\right]$$

$$\sigma_c = \sigma_c(A, Q, T, \tau, N) = \left[\underline{\sigma_c}, \overline{\sigma_c}\right]$$


A – геометрические параметры; Q – нагрузка; T – температура; τ – время; N – число циклов нагружения

Уравнение предельного состояния записывается как функция «прочности» и «нагрузки» и представляется линией на плоскости, разделяющей интервальную область на две площади: площадь безопасности A_S и площадь риска (разрушения) A_R

$$\mathcal{L}(\sigma_c, \sigma) = \sigma_c - \sigma = 0$$

Риск (возможность разрушения) пропорционален отношению площадей A_R и A_S

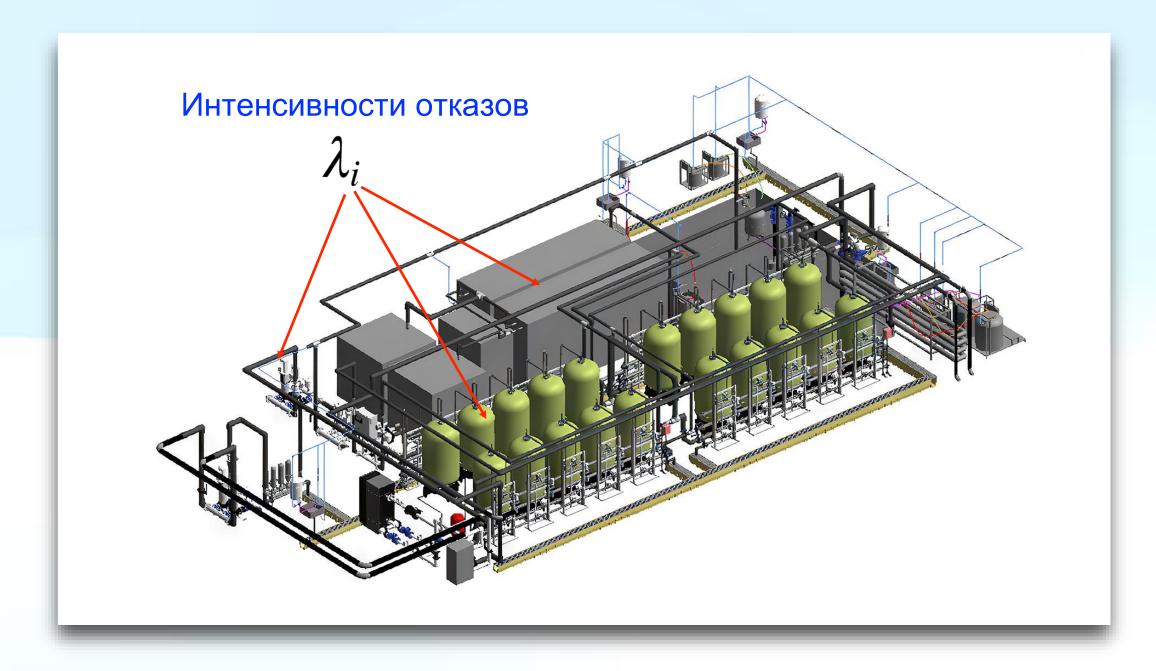
$$R_f \sim \frac{A_R}{A_S}$$

Интервальный риск-анализ

На основании принятых допущений можно получить выражения для меры δ возможностей разрушения, как отношения указанных площадей, с учетом наложения интервалов неопределенности

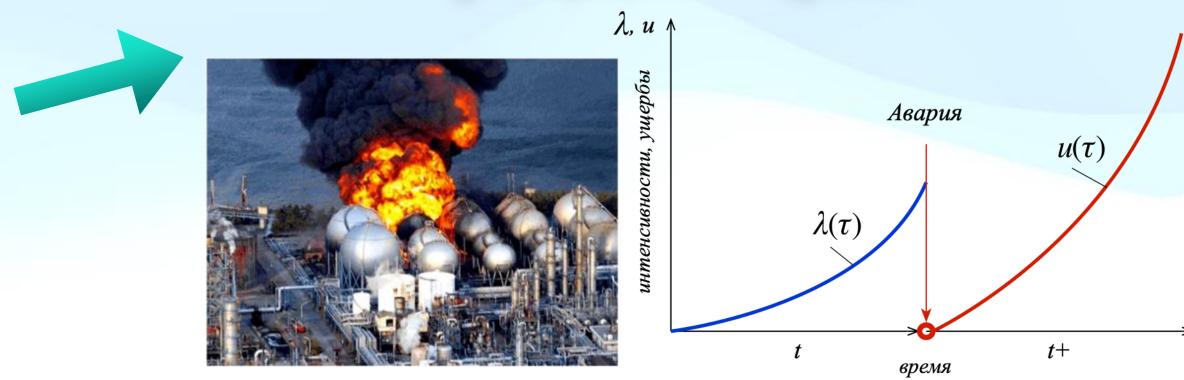
$$\delta = \begin{cases} 0, & \underline{\sigma_c} > \overline{\sigma} \\ \frac{(\overline{\sigma} - \underline{\sigma_c})^2}{8\sigma_c^{(2)}\sigma^{(2)}}, & \underline{\sigma} \leq \underline{\sigma_c} \leq \overline{\sigma} \leq \overline{\sigma_c} \\ 1 - \frac{\sigma^{(2)} - \sigma^{(1)} + \sigma_c^{(1)}}{2\sigma^2}, & \underline{\sigma} \leq \underline{\sigma_c} \leq \overline{\sigma} \leq \overline{\sigma} \\ 1 - \frac{\sigma^{(2)} - \sigma^{(1)} + \sigma_c^{(1)}}{2\sigma^2}, & \underline{\sigma_c} \leq \underline{\sigma} \leq \overline{\sigma} \leq \overline{\sigma} \\ 1 - \frac{(\overline{\sigma_c} - \underline{\sigma})^2}{8\sigma_c^{(2)}\sigma^{(2)}}, & \underline{\sigma_c} \leq \underline{\sigma} \leq \overline{\sigma} \leq \overline{\sigma} \end{cases}$$

$$1, & \overline{\sigma_c} \leq \underline{\sigma} \leq \overline{\sigma_c} \leq \overline{\sigma}$$


$$1, & \overline{\sigma_c} \leq \underline{\sigma} \leq \overline{\sigma_c} \leq \overline{\sigma}$$

$$\sigma_c^{(1)} = (\overline{\sigma}_c + \underline{\sigma}_c)/2, \sigma_c^{(2)} = (\overline{\sigma}_c - \underline{\sigma}_c)/2, \ \sigma^{(1)} = (\overline{\sigma} + \underline{\sigma})/2, \ \sigma^{(2)} = (\overline{\sigma} - \underline{\sigma})/2$$

Предварительные результаты расчетов для трубопроводов показывают реализуемость интервальных оценок на имеющейся инженерной информационной базе


Проблема 6 - Анализ риска аварий технических объектов

Инженерная модель объекта

Расчет риска *R* аварии объекта

$$R = P_f U_f \le \left[1 - \exp \left\{ \sum_{i=1}^k \int_0^t \lambda_i(\tau) d\tau \right\} \right] \times \sum_{j=1}^n \int_0^{t+1} u_j(\tau) d\tau$$

Необходимо учитывать:

- статистические отказы;
- беспрецедентные (уникальные) отказы

Интенсивности отказов λ_i и ущербы u можно получать по данным эксплуатации, расчетными методами (в том числе методом Монте-Карло), по экспертным оценкам

Результаты оценок риска на основе разных методов имеют существенные разбросы

Проблема 7 - Критерии принятия решений

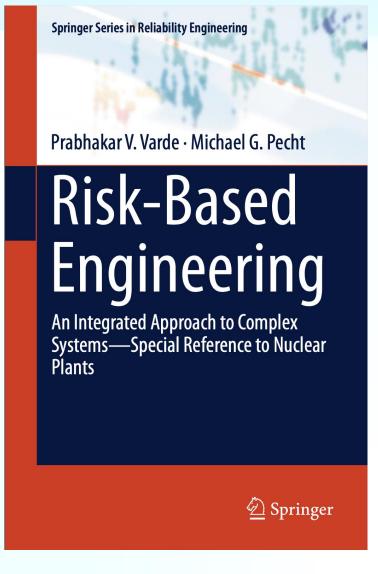
- 1. Конструкционная прочность
- детерминированные решения
- цена решения

- 2. Конструкционная надежность
- вероятностные решения

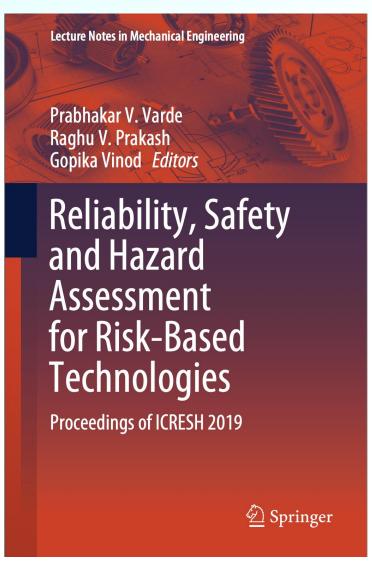
цена решения

- 3. Конструкционная безопасность
- вероятностные решения

цена решения


Risk-based

Risk-informed


Risk-Conscions

(риск-основанный) (риск-информированный) (риск-осознанный)

инятия решений

Prabhakar V. Varde Risk-Conscious Operations Management An Integrated Paradigm for Complex 2 Springer

Risk, Reliability and Safety Engineering

2023, 590 c

Заключение

Риск-анализ является сложной задачей, требующей глубокого знания особенностей объекта, фундаментальных основ механики, теории вероятностей, теории надежности и теории риска.

Формальное проведение риск-анализа может приводить к тяжелым ошибкам

«Нетрудно получить ответы, когда у вас есть все данные. Сложность заключается в том, чтобы получить ответы, когда у вас есть только половина данных, и половина их неверна, и вы не знаете, какая это половина»

/Лорд Кельвин/

Благодарю за внимание